RESIDENCE INN By Marriott 2345 Mill Rd, Alexandria, VA

JULIA E. PHILLIPS CONSTRUCTION MANAGEMENT

Appendix E: Controls Energy and Unit Calculations

The following can be found in this Controls Appendix:

- Delta DNT 103 Specification/Cut Sheet
- BACnet Testing Labs Test Sheet
- Weather Data for Alexandria, VA
- Drawing E 3.3
- *Drawing M* 602
- Virginia Dominion Power, GS 4 Schedule
- Energy and Cost Calculations
- Detail from Drawing E 2.1, Unit C
- Original Wiring Diagram
- INNCOM Wiring Diagrams

Network Thermostats BACstat II: DNT-T103/H103

Description

The DNT-T103 is an intelligent room thermostat with a custom 3-value, 96 segment, LCD display. The DNT-T103 can communicate on Delta's LINKnet network or directly on a BACnet MS/TP network.

The DNT-T103 can display a wide-range of digital or analog values including setpoints, temperature, airflow, heating and cooling status, fan speed, valve and damper position, and more. When connected on a BACnet MS/TP network, the DNT-T103 functions as an independent BACnet thermostat. When connected to a Controller, on a LINKnet network, the DNT-T103 provides a programmable remote sensor and expanded I/O capabilities.

Application

The DNT-T103 is designed to be a low-cost solution for control of unitary equipment. It has built-in, configurable algorithms for VAV, VVT, fan coil/unit ventilator, heat pump, radiation and humidification applications.

The DNT-T103 may also be connected to a LINKnet network to provide programmable remote sensor and expanded I/O capabilities.

Features

--Native BACnet[™] firmware

- -BACnet MS/TP or LINKnet communications
- -Configurable 3-value, 96 segment, LCD display (with optional backlighting)
- -4 Configurable push buttons
- -Derived Network Addressing (DNA) for simple integration into a standard network architecture
- -Field selectable applications
- -Service port

Specifications

BACnet Device Profile BACnet Application Specific Controller (B-ASC)

LCD 3-value and various icons (96 total segments) with optional backlighting

Push Buttons 4 stylized momentary push buttons

Temperature Sensor Thermistor Input - 10kΩ at 77°F (25°C)

Accuracy +/-0.36°F from 32-158°F (+/- 0.2°C from 0-70°C)

Display resolution of 0.1°

Stability 0.24°F over 5 years (0.13°C)

Humidity Sensor Accuracy of +/-2% RH from 0-100% RH (25°C, Vsupply = 5Vdc)

Display resolution of 0.1%

Stability of +/- 1% RH (typical at 50% RH over 5 years)

Note: Extended exposure to >90% RH causes a reversible shift of 3% RH

Inputs 1 Universal input - 10 bit (supporting 0-5v, 0-10v, $10k\Omega$)

Outputs 3 Binary triac outputs (supporting binary, PWM or tri-state)

 $\begin{array}{l} \textbf{Technology} \\ \text{8-bit processor with internal A/D, Flash and RAM} \end{array}$

Document Edition 1.2 August 2004

Network Thermostats BACstat II: DNT-T103/H103 Board Layout Diagram

Accessories

RPT-768—Delta Network Repeater for BACnet MS/TP

TRM-768—Delta Network Terminator for BACnet MS/TP

CON-768-Delta Network Converter

Ordering

Order the DNT-T103/H103 with the desired options, according to the following product numbers:

DNT-T103—Internal Thermistor Input, Additional I/O (1 IP and 3 OP), Backlighting (Option B), External Thermistor Terminator (Option X)

DNT-H103—Internal Thermistor Input, Internal Humidity Input, Additional I/O (1 IP and 3 OP), Backlighting, External Thermistor Terminator An appended button icon code must be included to specify the desired icons embossed on the buttons. If a button icon code is not specified, the product is shipped with the default button icons.

Default—Bottom 2 buttons are \blacktriangledown & \blacktriangle (Setpoint Adjust), top 2 buttons are OFF and ON

INT—Bottom 2 buttons are $\mathbf{\nabla}$ & \mathbf{A} (Setpoint Adjust), top 2 buttons are 0 and I (International)

Specifications (Continued)

Device Type Configured as a LINKnet or subnet device

Device Addressing Set via keypad

Communications Ports

BACnet MS/TP @ 9600, 19200, 38400 or 76800 bps (maximum of 99 devices per BACnet MS/TP segment)

Delta LINKnet @76800 bps (maximum 12 devices, depending on the controller with no more than 2 DFM/DNT devices per LINKnet segment)

Connectors Screw-type terminal connectors

Wiring Class Class 2

Power 24V AC

41 VA (with internally powered outputs)

Ambient 32° to 131°F (0° to 55°C)

10 - 90% RH (non-condensing)

Dimensions

5 x 3.25 x 1 in. (12.7 x 8.3 x 2.5 cm) with housing

0.3 lb. (120 g) with housing

Approvals/Standards UL 916 Listed

. . . .

CE

FCC Class B

BTL Listed

BACnet is a registered trademark of ASHRAE. ASHRAE does not endorse, approve or test products for compliance with ASHRAE standards. Compliance of listed products to the requirements of ASHRAE Standard 135 if the responsibility of the BACnet Manufacturers Association (BMA). BTL is a registered trademark of the BMA.

BACnet Testing Labs Product Listing

This product has been tested at the BACnet Testing Labs and found to comply with all the necessary interoperability requirements in place on the published test date. This listing represents the tested capability of the Listed Product. For information on additional functionality that was not covered in the test process, refer to the Manufacturer's PICS statement on the BMA website.

Listing Information

Vendor		Listing Status
Delta Controls 17850 - 56th Ave. Surrey, BC, Canada V3S 1C7		Listed Product
Test Requirements	BACnet Protocol Revision	Date Tested
Requirements as of January 2002	135-1995b	January 2002

Product Name	Model Number	Software Version
BACstat II	DNS-24, DNT-T103, DNT-T221	Release 2

Product Name	Link to PICS on BMA Website
BACstat II	http://www.bacnetassociation.org/delta controls/BACstat II

Device Profiles

Profile	Model Numbers
BACnet Application Specific Controller (B-ASC)	DNS-24, DNT-T103, DNT-T221

BIBBs Supported

	ReadProperty-B	DS-RP-B
Data Sharing	ReadPropertyMultiple-B	DS-RPM-B
	WriteProperty-B	DS-WP-B
	Dynamic Device Binding-B	DM-DDB-B
Device and Network	Dynamic Object Binding-B	DM-DOB-B

Object Type Support

Analog Input	Analog Value	Device

ReinitializeDevice-B

DM-RD-B

Data Link Layer Options

Media	Options
MS/TP master	9600, 19200, 38400, 76800

Device Binding Support

Static Binding is supported.

Character Set Support

ANSI X3.4

Weather data provided by AccuWeather.com

Weatherdatadepot Degree Day Comparison Report

Provided by EnergyCAP Energy Efficiency Software and <u>AccuWeather</u>

Weather Station Code: DCA Weather Station Location: Washington National, DC Balance Point Temperature: 65°

Print Friendly Version Base Year = 2006 Comparison Year = 2007 **Comparison Percentages**** Month Heating Cooling Total Heating Cooling Total Heating Cooling Total Jan 672 0 672 746 0 746 11% N/A 11% Feb 733 0 733 950 0 950 29.6% N/A 29.6% Mar 6 535 5 0.9% N/A 0.7% 529 534 539 174 16 190 353 19 372 102.9% N/A 95.8% Apr 90 171 53 150 203 -34.6% May 81 66.7% 18.7% Jun 0 291 291 0 341 341 N/A 17.2% 17.2% -7.4% Jul 0 487 487 0 451 451 -7.4% N/A Aug 0 490 490 0 462 462 N/A -5.7% -5.7% Sep 22 118 140 10 254 264 N/A 115.3% 88.6% Oct 250 20 270 74 146 220 -70.4% N/A -18.5% Nov 419 0 419 451 0 451 7.6% N/A 7.6% 0 639 0 Dec 639 713 713 11.6% N/A 11.6% Totals 3519 1518 5037 3884 1828 5712 10.4% 20.4% 13.4% YTD:

**Please note: When the monthly degree days in either the base year or the comparison year are less then 30, a percentage comparison is not calculated. HOWEVER, all total comparison percentages (month and year) do include all heating and cooling degree days. YTD means Year-To-Date.

Degree Day Comparison Report Provided by EnergyCAP and weatherDataDepot http://www.weatherdatadepot.com

Weather Information Provided by AccuWeather <u>http://www.accuweather.com</u>

			FEEDERS LIS.	TED ARE I	BASED ON	75°C Q			PER SET		
NO NO	SETS.	PHASE	NEUTRAL	GROUND	CONDUIT	NO.		PHASE	NEUTRAL	GROUND	CONDUIT
(-)	<u> </u>	1 #12	#12	# 12	3/4"	હ	-	3 500 kcmil		#3	3-1/2"
(n)	-	3 #12		#12	3/4"	(J	1	3 500 kcmil	500 kcmil	#3	4"
(w)	-	3 #12	#12	#12	3/4"	(JIN)	1	3 500 kcmil	2 500 kcmil	#3	4"
(4)	-	3 #10	-	#10	3/4"	(32)	2	3 #4/0		#2	2-1/2"
(5)	-	3 #10	#10	#10	3/4"	(H	2	3 #4/0	#4/0	#2	2-1/2"
(m)	-	3 #8		#10	1"	(¥	2	3 250 kcmil		#2	2-1/2"
(-)	1	3 # 8	#8	# 10	1"	(H	2	3 250 kcmil	250 kcmil	#2	3"
(~)	1	3 #6		# 10	1"	(35N)	2	3 250 kcmil	2 250 kcmil	#2	3"
٩	1	3#6	#6	# 10	1-1/4"	36	2	3 350 kcmil		#1	3"
(-)	> 1	3 #4		#8	1-1/4"	(J7)	2	3 350 kcmil	350 kcmil	#1	3-1/2"
(=)) 1	3 #4	#4	#8	1-1/4"	38	2	3 400 kcmil		#1/0	3"
(5	-	3 #3	1	#8	1-1/4"	હ	2	3 400 kcmil	400 kcmil	#1/0	3-1/2"
(E)	> 1	3 # 3	#3	#8	1-1/2"	4 5	2	3 500 kcmil		#1/0	3-1/2"
(IJ)) 1	3 # 3	2 #3	#8	1-1/2"	(2	3 500 kcmil	500 kcmil	#1/0	4"
(∓)	-	3 # 2	1	#6	1-1/4"	42	3	3 350 kcmil	1	#2/0	3"
(5)	-	3 # 2	#2	#6	1-1/2"	(5)	3	3 350 kcmil	350 kcmil	#2/0	3-1/2"
()	-	3 #1/0		#6	2"	(‡)	3	3 400 kcmil	1	#2/0	3"
(=)	-	3 #1/0	#1/0	#6	2"	(ð)	3	3 400 kcmil	400 kcmil	#2/0	3-1/2"
(F)	-	3 #1/0	2 #1/0	#6	2"	(łs)	3	3 500 kcmil		#3/0	3-1/2"
(ਛ)	-	3 # 2/0		#6	2"	41	3	3 500 kcmil	500 kcmil	#3/0	4"
(-	3 # 2/0	#2/0	#6	2"	æ	4	3 350 kcmil	350 kcmil	#3/0	3-1/2"
(ಆ)	-	3 #3/0		#6	2"	3	5	3 400 kcmil	400 kcmil	#4/0	3-1/2"
(2)	1	3 #3/0	#3/0	#6	2-1/2"	ଞ	6	3 400 kcmil	400 kcmil	250 kcmil	3-1/2"
(21N	-	3 #3/0	2 #3/0	#6	2-1/2"	(SI	7	3 500 kcmil	500 kcmil	350 kcmil	4"
(2)	1	3 #4/0	-	#4	2-1/2"	ß	8	3 500 kcmil	500 kcmil	400 kcmil	4"
(23)) 1	3 #4/0	#4/0	#4	2-1/2"	(3)	11	3 500 kcmil	500 kcmil	500 kcmil	4"
(23N	1	3 #4/0	2 #4/0	#4	3"	(5 4	6	3 700 kcmil	700 kcmil	#3/0	4"
(24)) 1	3 250 kcmil		#4	2-1/2"	(55)	6	3 600 kcmil	600 kcmil	#3/0	4"
(25)	1	3 250 kcmil	250 kcmil	#4	3"	(S6)	L	2 #12	#12	# 12	3/4"
(25N	1	3 250 kcmil	2 250 kcmil	#4	2-1/2"	(57)	11	3 750 kcmil ALUMINUM	750 kcmil ALUMINUM	800 kcmil ALUMINUM	4"
(26)) 1	3 350 kcmil		#4	3"						
	1	3 350 kcmil	350 kcmil	#4	3-1/2"						
(28)	1	3 400 kcmil		#3	3"						
(୫)	-	3 400 kcmil	400 kcmil	#3	3-1/2"						

Ш

	EQUIPMENT SCHEDULE
ITEM	DESCRIPTION
\diamondsuit	NOT USED
\bigotimes	STANDBY DIESEL GENERATOR 450KW, 460/265V, 30, 4W, W/ (2) MCB AS INDICATED ON POWER RISER
$\langle \mathfrak{S} \rangle$	CHILLER @ 313MCA, 460V, 3ø.
	DRY-TYPE TRANSFORMER 30KVA, 480-208/120V, 3ø
\$	DRY-TYPE TRANSFORMER, 45 KVA, 480-208/120V, 3ø
\bigotimes	AUTOMATIC TRANSFER SWITCH, 200A, 480V, 30 0-1 MINUTE TIME DELAY, 65,000 AIC SERIES RATED
\Diamond	AUTOMATIC TRANSFER SWITCH, 250A, 480V, 30 0-1 MINUTE TIME DELAY, 65,000 AIC SERIES RATED
	TRANSIENT VOLTAGE SURGE SUPPRESSION UNIT (TVSS) WITH INTERGRAL DISCONNECT, 320KA
\diamondsuit	DRY-TYPE TRANSFORMER, 75 KVA, 480-208/120V, 3ø
\Diamond	3/60/50 FUSED SAFETY SWITCH FOR PANELS 'L_'
♦	3/400/300 FUSED SAFETY SWITCH FOR PANELS 'SDP-'
${}^{}$	3/400/400 FUSED SAFETY SWITCH FOR PANEL 'LL'
$\langle \rangle$	20A, 1P ENCLOSED CIRCUIT BREAKER FOR ELEV. LTG. AND CONTROLS

0

W

H:\DESIGN\Edwgs\05055.00\E 3-3 (EQUIPSCHED).dwg Xrefs: CD30X42V; dcslogo_v

-

ω

4

≥

		300	0 A, 48	0/277 V	', 3ø, 4V	v 200,000 A.I.C.
NO.	POLE	CIRCUIT E	3REAKER TRIP	SWITCH	FUSE	EQUIPMENT SERVED
1	3					INCOMING SERVICE & VA POWER C/T
2	3					EMERGENCY TAP SECTION
3	3					OWNER METERING
4	3			3000	3000	MAIN BPS SWITCH *
5	3	200	150			PANEL EH
6	3	400	225			PANEL EH1
7	3	400	250			PANEL HH
8	3	400	250			PANEL H1
9	3	400	400			CHILLER CH-1
10	3	400	400			PANEL HP
1	3	200	150			PANEL HM2
12	3	400				SPACE WITH BUSBAR PROVISIONS
13	3	400				SPACE WITH BUSBAR PROVISIONS
14	3	400				SPACE WITH BUSBAR PROVISIONS
15	3	I	I	1200	1200	TRANSFORMER PRIMARY BPS
16						
17						
NEC TOT.	al load Vide gro	: 1639.2K) UND FAULT	W1; PROTECTIO	793.9 AMPS ON SET AT	600 AMPS	
		NO. POLE 11 13 12 1 10 9 8 7 6 3 2 1 NO. 11 13 12 1 10 9 8 7 6 3 3 3 9 11 16 13 3 3 3 3 3 3 3 9 NEC TOTAL LOAD 3 3 3 3 3 3 3 3 8	NO. POLE CIRCUIT r FRAME 1 3 - 2 3 - 3 3 - 5 3 3 6 3 - 1 3 - 2 3 - 3 3 - 6 3 400 9 3 400 11 3 200 12 3 400 13 3 400 14 3 400 13 3 400 14 3 400 15 3 - 16 - - 16 - - 17 - - 16 - - 17 - - 16 - - 17 - - 16 - - <	Solution A, 48 NO. POLE CIRCUIT BREAKER FRAME TRIP 1 3 2 3 3 3 3 3 4 3 5 3 200 150 6 3 400 225 7 3 400 250 9 3 400 250 10 3 400 250 11 3 400 250 12 3 400 250 13 3 400 14 3 400 15 3 16 16 17 16	NO. A, $480/277$ V NO. POLE CIRCUIT BREAKER FRAME SWITCH 1 3 2 3 3 3 2 3 3 3 4 3 3000 5 3 400 225 6 3 400 250 9 3 400 250 10 3 400 400 11 3 200 150 12 3 400 13 3 400 14 3 400 1200 15 3 1200 16 1200 1200	NO. POLE CIRCUIT BREAKER FRAME TRIP SWITCH FUSE 1 3 FRAME TRIP SWITCH FUSE 2 3 3 3 3 3 3 1.50 4 3 1.50 5 3 400 225 6 3 400 250 9 3 400 250 10 3 400 11 3 200 150 12 3 400 13 3 00 1200 1200

									*	*					$ \longrightarrow $	
	* PF					5	4	4	3	3	2	1		STEP	450KW	Π Σ
TOTAL GENERATOR LOAD SUMMARY	ROVIDE RELAY FOR TIME DELAY					MISCELLANEOUS BUILDING EQUIPMENT	SPARE	BUILDING ELEVATORS - (1 ELEVATORS)	MAU-01 AND -02	STAIRWELL PRESSURIZATION FANS SF1-SF5	FIRE PUMP	FIRE ALARM SYSTEM	BUILDING EMERGENCY LIGHTING	LOAD SERVED	LON DAY TANK	CDUCNUC UCNED ALO
								17.0	2 @ 10HP	5 @ 7.5HP	125.0			HP	MAXIMUM SKW REQ. MAXIMUM SKVA REQ. MAX. STARTING VOLT	
383.3 kW					(<pre>{ 149.6 </pre>	40.0	13.0	21.4	35.0	99.3	10.0	15.0	KW	516 kW 1896 kVA FAGE DIP 20%] = Π

GROUND CONDUCTOR SCHEDULE

#750 MCM INSULATED GROUND CONDUCTOR	æ) (
#3/0 INSULATED GROUND CONDUCTOR	ମ
#2/0 INSULATED GROUND CONDUCTOR	ଞ
#1/0 INSULATED GROUND CONDUCTOR	ଞ
#2 INSULATED GROUND CONDUCTOR	(F)
#4 INSULATED GROUND CONDUCTOR	B
#6 INSULATED GROUND CONDUCTOR	(S2)
#8 INSULATED GROUND CONDUCTOR	G
DESCRIPTION	NO.
ALL CONDUCTORS ARE COPPER	

PLUG-IN BUSWAY CALCS

107.3 KVA	PANEL LL =	
- 26.5 KVA	PANELS L4, L9, L14 =	
22.3 KVA ,451.2 AMP)	TOTAL DEMANDED LOAD 52	
	DEMAND FACTOR 23% PER 220.32	
271 KVA	TOTAL 2,2	
378,000 VA	ELECTRIC HEATING COIL (189 UNITS × 2000W)*	8
85,050 VA	FANS (189 UNITS x 450W) =	7
452,500 VA	ELECTRIC RANGE (181 UNITS x 2,500W)	6
199,100 VA	MICROWAVE (181 UNITS x 1,100W) =	თ
144,500 VA	GARBAGE DISPOSAL (181 UNITS x 800W) =	4
199,100 VA	DISHWASHER (181 UNITS x 1,100W) =	3
543,000 VA	TWO SMALL APPLIANCE CIRCUITS (181 UNITS x 3,000W) =	2
269,871 VA	GENERAL LIGHTING (181 UNITS x 497 SF AVERAGE x 3W/SF) =	1

ELECTRICAL SERVICE:	
2,500 AMPERES 3 PHASE	
120/208 VOLTS - 4 WIRE	

TOTAL

656.1 KVA (1,823.3 AMP)

* ELEC 5 HEATING COIL FOR 140 UNITS Ø 1,5KW, 33 @ 3.0KW, AND 8 @ 2,500KW

Ö

THIS DOCUMENT IS THE PROPERTY OF DAVIS, CARTER, SCOTT ". IT IS TO BE USED FOR THE SPECIFIC PROJECT IDENTIFIED OR REFERRED TO HEREIN OR EXTENSIONS TO THIS PROJECT, IN WHOLE OR PART. 'D A VIS ~ C A R T E R ~ S C O T T ALL RIGHTS RESERVED.

CITY OF ALEXANDRIA PERMIT COMMENTS #2 JAN. 23. 2007 CITY OF ALEXANDRIA PERMIT CITY OF ALEXANDRIA 23. 2007 A FINAL CONSTRUCTION SET PROJECT ITLE PROJECT IN. 2345/2347 MILL ROAD ALEXANDRIA, VIRGINIA PROJECT IN. 2345/2347 MILL ROAD ALEXANDRIA, VIRGINIA PROJECT IN. 2345/2347 MILL ROAD ALEXANDRIA, VIRGINIA PROJECT IN. 30541200 DATE OCTOBER 20th, 2006 DRAWINC TITLE ELECTRIC EQUIPMENT- MARRING ITLE DATE OCTOBER 20th, 2006 DRAWINC TITLE BATE OCTOBER 20th, 2006 DRAWINC ITLE BATE OCTOBER 20th, 2006 DRAWINC INTLE BRAWING INJERE BRAWING INJER BRAWING INJERE <th>F 703.821.6976 WWW.desdesign.com</th> <th>DAVIS CARTER SCOTTLd Architecture Land Planning Suite 500 McLean, Virginia 22102 P 703.556.9275</th>	F 703.821.6976 WWW.desdesign.com	DAVIS CARTER SCOTTLd Architecture Land Planning Suite 500 McLean, Virginia 22102 P 703.556.9275
---	-------------------------------------	--

					(TYPICAL) VERTICAL FAN COIL UNIT SCHEDULE																														
SYMBOL	MANUFACTURER	TYPE	LOCATION	SERVICE	QTY	SUPPLY	(OSA	TSP	FSP	SUPPLY FAN	DRIVE	BHP HF	P TOTAL	SENSIBI F	FDB	FWB		ILLED WATER	ER COOLING (COIL W FWT	IWT	ΛPW	ROWS	/F CAPACI		HEATING COIL		VOI TAGF	ELECTRICAL		FIL	LTERS	VIBRATION	OPER WGT	REMARKS
Fair	MODEL					(CFM)	(CFM)	(IN WC)	(IN WC)	(FT)	TYPE		(MBH)	(MBH)	(°F)	(°F)	(°F) (°	('F) (IN	N WC) (GP	M) (°F)	(°F) ((FT WC)	FPI TYP	E (MBH)	KW	('F) ('F)	(IN WC)		(AMPS) (A	MPS)		(IN)		(LBS)	
2-1	WILLIAMS ER-004	VERTICAL FAN COIL UNIT	2ND FL GUEST ROOM 1—BR ADA M	CONDITIONING	1	450	_	-	0	-	DIRECT DRIVE	- 1/*	8.4	7.2	75	63	60.4 5	56.9	.09	1.2 44	58	1.7	- MOI	3.4	1	72 79) –	208-1-60	-	– PLEATE	ED	14"X25"X1"	INTERNAL	300	1,2,3,4,5,6,8
FCU-2 2-2	WILLIAMS ER-006	VERTICAL FAN COIL UNIT	2ND FL GUEST ROOM STUDIO C1	GUEST ROOM CONDITIONING	1	665	_	-	0	-	DIRECT DRIVE	- 1/	6 12.8	11	75	63	59.9 5	56.7	.22	1.8 44	58	1.2	4 3-W, - MOI	5.1	1.5	72 79) _	208-1-60	-	– PLEATE	D	14"X25"X1"	INTERNAL	300	1,2,3,4,5,6,8
FCU-1 2-3	WILLIAMS ER-004	VERTICAL FAN COIL UNIT	2ND FLOOR STUDIO B	GUEST ROOM CONDITIONING	1	450	_	-	0	-	DIRECT DRIVE	- 1/*	8.4	7.2	75	63	60.4 5	56.9	.09	1.2 44	58	1.7	3 3-W, - MOI	AY 5.1	1.5	72 82.4		208-1-60	-	– PLEATE	D	14"X25"X1"	INTERNAL	300	1,2,3,4,5,6,8
	WILLIAMS ER-004	VERTICAL FAN COIL UNIT	2ND FLOOR STUDIO B	GUEST ROOM CONDITIONING	1	450	_	-	0	-	DIRECT DRIVE	- 1/*	8.4	7.2	75	63	60.4 5	56.9	.09	1.2 44	58	1.7	3 3-W, - MOI	AY 5.1	1.5	72 82.4		208-1-60	-	– PLEATE	ED	14 " X25"X1"	INTERNAL	300	1,2,3,4,5,6,8
FCU-2	WILLIAMS ER-006	VERTICAL FAN COIL UNIT	2ND FL GUEST ROOM STUDIO A1	GUEST ROOM CONDITIONING	1	665	_	-	0	-	DIRECT DRIVE	- 1/	6 12.8	11	75	63	59.9 5	56.7	.22	1.8 44	58	1.2	4 3-W	AY 6.8	2.0	72 81	1 –	208-1-60	-	– PLEATE	D	14"X25"X1"	INTERNAL	300	1,2,3,4,5,6,8
$\overrightarrow{FCU-2}$	WILLIAMS ER-006	VERTICAL FAN COIL UNIT	2ND FL GUEST ROOM STUDIO B1	GUEST ROOM CONDITIONING	1	665	_	-	0	-	DIRECT DRIVE	- 1/	6 12.8	11	75	63	59.9 5	56.7	.22	1.8 44	58	1.2	4 3-W	AY 6.8	2.0	72 81	1 –	208-1-60	_	– PLEATE	ED	14"X25"X1"	INTERNAL	300	1,2,3,4,5,6,8
FCU-3 2-7	WILLIAMS ER-008	VERTICAL FAN COIL UNIT	2ND FL GUEST ROOM 1BR H	GUEST ROOM CONDITIONING	1	860	_	-	0	_	DIRECT DRIVE	- 1/	6 19.0	15.8	75	63	58.2 5	55.7	.18 :	2.7 44	58	2.5	4 3-W. - MOI	AY 10.2	3.0	72 83	3 –	208-1-60	_	– PLEATE	ED	14 " X25"X1"	INTERNAL	300	1,2,3,4,5,6,8
FCU-1 x-1	WILLIAMS ER-004	VERTICAL FAN COIL UNIT	3–14 FL GUEST ROOMS 1–BR J	GUEST ROOM CONDITIONING	12	450	-	-	.3	-	DIRECT DRIVE	- 1/1	8.4	7.2	75	63	60.4 5	56.9	.09	1.2 44	58	1.7	3 3-W, - MOI	AY 6.8	2.0	72 86	5 –	208-1-60	-	– PLEATE	ED	14"X25"X1"	INTERNAL	300	1,2,3,4,5,7,8
FCU-1 x-2	WILLIAMS ER-004	VERTICAL FAN COIL UNIT	3—14 FL GUEST ROOMS STUDIO C	GUEST ROOM CONDITIONING	12	450	_	-	0	_	DIRECT DRIVE	- 1/*	15 8.4	7.2	75	63	60.4 5	56.9	.09	1.2 44	58	1.7	3 3-W.	AY 5.1	1.5	72 82.4		208-1-60	_	– PLEATE	ED	14"X25"X1"	INTERNAL	300	1,2,3,4,5,6,8
FCU-1 x-3	WILLIAMS ER-004	VERTICAL FAN COIL UNIT	3–14 FL GUEST ROOMS STUDIO A	GUEST ROOM CONDITIONING	12	450	_	-	0	_	DIRECT DRIVE	- 1/*	15 8.4	7.2	75	63	60.4 5	56.9	.09	1.2 44	58	1.7	3 3-W.	AY 3.4	1.0	72 82.4		208-1-60	_	– PLEATE	ED	14"X25"X1"	INTERNAL	300	1,2,3,4,5,6,8
FCU-1	WILLIAMS ER-004	VERTICAL FAN COIL UNIT	3–14 FL GUEST ROOMS STUDIO A	GUEST ROOM CONDITIONING	12	450	_	_	0	_	DIRECT DRIVE	- 1/*	15 8.4	7.2	75	63	60.4 5	56.9	.09	1.2 44	58	1.7	3 3-W,	AY 3.4	1.0	72 82.4		208-1-60	_	– PLEATE	ED	14"X25"X1"	INTERNAL	300	1,2,3,4,5,6,8
FCU-1	WILLIAMS ER-004	VERTICAL FAN COIL UNIT	3-14 FL GUEST ROOMS STUDIO A1	GUEST ROOM CONDITIONING	12	450	_	_	0	_	DIRECT DRIVE	- 1/*	15 8.4	7.2	75	63	60.4 5	56.9	.09	1.2 44	58	1.7	3 3-W,	AY 3.4	1.0	72 79) _	208-1-60	_	– PLEATE	ED	14"X25"X1"	INTERNAL	300	1,2,3,4,5,6,8
FCU-1	WILLIAMS ER-006	VERTICAL FAN COIL UNIT	3-14 FL GUEST ROOMS STUDIO B1	GUEST ROOM CONDITIONING	12	450	_	_	0	_	DIRECT DRIVE	- 1/*	15 8.4	7.2	75	63	60.4 5	56.9	.09	1.2 44	58	1.7	3 3-W,	AY 5.1	1.5	72 82	2 –	208-1-60	_	– PLEATE	ED	14"X25"X1"	INTERNAL	300	1,2,3,4,5,6,8
FCU-2	WILLIAMS FR-006	VERTICAL FAN COIL UNIT	3-14 FL GUEST ROOMS 1-BR H	GUEST ROOM CONDITIONING	12	665	_	_	.3	_	DIRECT DRIVE	- 1/	6 12.8	11	75	63	59.9 5	56.7	.22	1.8 44	58	1.2	4 3-W	AY 8.5	2.5	72 84		208-1-60	_	– PLEATE	ED	14"X25"X1"	INTERNAL	300	1,2,3,4,5,7,8
FCU-1	WILLIAMS FR-004	VERTICAL FAN COIL	3-14 GUEST ROOMS STUDIO G	GUEST ROOM CONDITIONING	12	450		_	0	_	DIRECT	- 1/*	15 8.4	7.2	75	63	60.4 5	56.9	.09	1.2 44	58	1.7	3 3-W	AY 3.4	1	72 79) _	208-1-60	_	– PLEATE	ED	14"X25"X1"	INTERNAL	300	1,2,3,4,5,6,8
FCU-1	WILLIAMS FR-004	VERTICAL FAN COIL	3–14 FL GUEST ROOMS STUDIO F– ADA	GUEST ROOM CONDITIONING	12	450		_	0	_	DIRECT	- 1/*	15 8.4	7.2	75	63	60.4 5	56.9	.09	1.2 44	58	1.7	3 3-W	AY 6.8	2.0	72 86	6 –	208-1-60	_	– PLEATE	ED	14"X25"X1"	INTERNAL	300	1,2,3,4,5,6,8
FCU-1	WILLIAMS	VERTICAL FAN COIL	3-14 FL GUEST ROOMS STUDIO E	GUEST ROOM CONDITIONING	12	450			0	_	DIRECT	- 1/-	15 8.4	7.2	75	63	60.4 5	56.9	.09	1.2 44	58	1.7	3 3-W	AY 6.8	2.0	72 86	3 –	208-1-60	_	_ PLEATE	ED	14"X25"X1"	INTERNAL	300	1,2,3,4,5,6,8
FCU-1	WILLIAMS	VERTICAL FAN COIL	3-14 FL GUEST ROOMS STUDIO D	GUEST ROOM CONDITIONING	12	450			0	_	DIRECT	- 1/-	15 8.4	7.2	75	63	60.4 5	56.9	.09	1.2 44	58	1.7	3 3-W	AY 5.1	1.5	72 82	2 _	208-1-60	_	– PLEATE	ED	14"X25"X1"	INTERNAL	300	1,2,3,4,5,6,8
FCU-1	WILLIAMS	VERTICAL FAN COIL	3–14 FL GUEST ROOMS	GUEST ROOM	12	450			0	_		- 1/*	15 8.4	7.2	75	63	60.4 5	56.9	.09	1.2 44	58	1.7	3 3-W	AY 5.1	1.5	72 82	2 _	208-1-60	_	_ PLEATE	ED	14"X25"X1"	INTERNAL	300	1,2,3,4,5,6,8
FCU-1	WILLIAMS	VERTICAL FAN COIL	3-14 FL GUEST ROOMS	GUEST ROOM	12	450			0	_		- 1/*	15 8.4	7.2	75	63	60.4 5	56.9	.09	1.2 44	58	1.7	3 3-W	AY 5.1	1.5	72 82	2 _	208-1-60	_	– PLEATE	ED	14 " X25"X1"	INTERNAL	300	1,2,3,4,5,6,8
FCU-1	WILLIAMS	VERTICAL FAN COIL	3-14 FL GUEST ROOMS	GUEST ROOM	12	450			.3	_		- 1/*	15 8.4	7.2	75	63	60.4 5	56.9	.09	1.2 44	58	1.7	3 3-W	AY 6.8	2.0	72 86	3	208-1-60	_	_ PLEATE	ED	14"X25"X1"	INTERNAL	300	1,2,3,4,5,7,8
FCU-1	WILLIAMS	VERTICAL FAN COIL	15TH FL GUEST ROOM	GUEST ROOM	1	450			.3	_		- 1/*	15 8.4	7.2	75	63	60.4 5	56.9	.09	1.2 44	58	1.7	3 3-W,	AY 8.5	2.5	72 89) _	208-1-60	_	– PLEATE	ED	14 " X25"X1"	INTERNAL	300	1,2,3,4,5,7,8
FCU-1	WILLIAMS	VERTICAL FAN COIL	15TH FL GUEST ROOM	GUEST ROOM	1	450			0	_		- 1/*	15 8.4	7.2	75	63	60.4 5	56.9	.09	1.2 44	58	1.7	- MOI 3 3-W,	AY 5.1	1.5	72 82.4		208-1-60	_	– PLEATE	ED	14"X25"X1"	INTERNAL	300	1,2,3,4,5,6,8
FCU-1	WILLIAMS	VERTICAL FAN COIL	15TH FL GUEST ROOM	GUEST ROOM	1	450		_	0	_	DIRECT	- 1/*	15 8.4	7.2	75	63	60.4 5	56.9	.09	1.2 44	58	1.7	- MOI 3 3-W,	AY 5.1	1.5	72 82.4		208-1-60	_	– PLEATE	ED	14"X25"X1"	INTERNAL	300	1,2,3,4,5,6,8
FCU-1	WILLIAMS	VERTICAL FAN COIL	15TH FL GUEST ROOM	GUEST ROOM	1	450			0	_		- 1/*	15 8.4	7.2	75	63	60.4 5	56.9	.09	1.2 44	58	1.7	- MOI 3 3-W,	AY 5.1	1.5	72 82.4		208-1-60	_	_ PLEATE	ED	14"X25"X1"	INTERNAL	300	1,2,3,4,5,6,8
FCU-1	WILLIAMS	VERTICAL FAN COIL	15TH FL GUEST ROOM	GUEST ROOM	1	450			0	_		- 1/-	15 8.4	7.2	75	63	60.4 5	56.9	.09	1.2 44	58	1.7	- MOI 3 3-W	AY 5.1	1.5	72 82.4		208-1-60	_	_ PLEATE	ED	14"X25"X1"	INTERNAL	300	1,2,3,4,5,6,8
FCU-1	WILLIAMS	VERTICAL FAN COIL	15TH FL GUEST ROOM	GUEST ROOM	1	450			0	_	DIRECT	- 1/*	15 8.4	7.2	75	63	60.4 5	56.9	.09	1.2 44	58	1.7	- MOI 3 3-W,	AY 5.1	1.5	72 82	2 _	208-1-60	_	_ PLEATE	ED	14"X25"X1"	INTERNAL	300	1.2.3.4.5.6.8
15-6/ FCU-2	WILLIAMS	VERTICAL FAN COIL	15TH FL GUEST ROOM	GUEST ROOM	1	665			.3	_	DIRECT	- 1/	6 12.8	11	75	63	59.9 5	56.7	.22	1.8 44	58	1.2	- MOI 4 3-W,	AY 8.5	2.5	72 84		208-1-60	_	_ PLEATE	ED	14"X25"X1"	INTERNAL	300	1.2.3.4.5.7.8
15-7/ FCU-1	WILLIAMS	VERTICAL FAN COIL	15TH FL GUEST ROOM	GUEST ROOM	1	450			0	_	DIRECT	- 1/*	15 8.4	7.2	75	63	60.4 5	56.9	.09	1.2 44	58	1.7	- MOI 3 3-W,) AY 3.4	1	72 79) _	208-1-60	_	_ PLEATE	ED	14"X25"X1"	INTERNAL	300	1.2.3.4.5.6.8
15-8/ FCU-1	ULLIAMS	VERTICAL FAN COIL	15TH FL GUEST ROOM	GUEST_ROOM	1	450			0	_	DIRECT	- 1/*	15 8.4	7.2	75	63	60.4 5	56.9	.09	1.2 44	58	1.7	- MOI 3 3-W,	AY 6.8	2.0	72 86	<u> </u>	208-1-60	_	PLEATE	ED	14"X25"X1"	INTERNAL	300	1.2.3.4.5.6.8
15-9/ FCU-1	ER-004 WILLIAMS	VERTICAL FAN COIL	15TH FL GUEST ROOM	GUEST_ROOM	1	450			0	_	DIRECT	- 1/*	15 8.4	7.2	75	63	60.4 5	56.9	.09	1.2 44	58	1.7	- MOI 3 3-W,) AY 5.1	1.5	72 86	<u> </u>	208-1-60	_	PLEATE	ED	14"X25"X1"	INTERNAL	300	1.2.3.4.5.6.8
15–10 FCU–1	ER-004 WILLIAMS	UNIT VERTICAL FAN COIL	15TH FL GUEST ROOM	GUEST_ROOM	1	450			0		DRIVE	- 1/2	15 84	7.2	75	63	60.4 5	56.9	09		58	1.7	- MOI 3 3-W,	AY 5.1	1.5	72 82) _	208-1-60		PLEATE	ED.	14"X25"X1"		300	1234568
15-11/ FCU-1	ER-004 WILLIAMS	UNIT VERTICAL FAN COIL	15TH FL GUEST ROOM	GUEST ROOM	1	150					DIRECT	_ 1/-	15 R /	7.2	75	67	60.4	56.9	09		52	1 7	- MOI 3 3-W) ^{0.1} AY 51	1.5	72 22	- ,	208-1-60				14"X25"X1"		300	1234568
15-12 /FCU-1	ER-004 WILLIAMS	UNIT VERTICAL FAN COIL	STUDIO D	CONDITIONING GUEST ROOM	1	450					DRIVE	_ 1/-	15 0.4 15 0 <i>1</i>	7.2	75	50	60 / 5	56.0	00	1.2 44	50	1.7	- MOI 3 3-W	AY 5.1	1.5	70 00		200 1-00				14"X25"X1"		300	1 2 3 / 5 6 2
15-13 FCU-1	ER-004 WILLIAMS	UNIT VERTICAL FAN COIL	STUDIO D 15TH FL GUEST ROOM	CONDITIONING GUEST ROOM		450			U 	-	DRIVE DIRECT	- 1/	δ.4 15 ο.4	7.2	/0	67	60 4 C	56.0	.00		50	1./	- MOI 3 3-W) ^{D.1}		70 00						14"Y25"V1"		300	1,2,3,4,3,0,0
NOTES	ER-004	UNIT	1 BR – K	CONDITIONING	1	450		_	.S	-	DRIVE	- 1/*	טן 8.4 	/.2	/5	63	ου.4 5	9.9	.09	44	58	1.7	- MOI) 6.8	2.0	/2 86		208-1-60	_		-U	14 AZU AT	INTERNAL	300	١,᠘,ఎ,4,ᢒ,/,ð
1. 1/2" ⁻ 2. WALL I 3. 3-WAY	HICK, 3 POUND DENSITY, N 10UNT 24V THERMOSTAT WI FLECTRIC VALVE PACKAGE	NEOPRENE COATED INSULATIO ITH MANUAL CHANGE OVER.	N FAN SHALL HAVE A MEDIUM/HIG	IGH BUT NO OFF POSITION.			NOMINAL UNIT S 1—400 CFM	SIZE:																											

2. WALL MOUNT 24V THERMOSTAT WITH MANUAL CHANGE OVER. FAN SHALL HAVE A MEDIUM/HIGH BUT NO OFF POSITION. 3. 3-WAY ELECTRIC VALVE PACKAGE 4. STAINLESS STEEL DRAIN PAN WITH FORMED P-TRAP CONNECTION 5. TRANSFORMER

6. DOUBLE DEFLECTION ALUMINUM SUPPLY AIR GRILLE 7. DUCTED SUPPLY AIR CONNECTION

8. INTEGRAL ELECTRIC DISCONNECT

BUILDING AUTOMATION SYSTEM PANEL SCHEDULE ELECTRICAL DATA TAG LOCATION CONTROL CONVENIENCE POWER EMERGENCY VA OUTLET-AMPS (VOLTS/PH/HZ) POWER PENTHOUSE BMS-1 400 120-1-60 YES 10 MER 2003 BMS-2 300 120-1-60 YES 10 1ST FL FIRE CONTROL ROOM 1002 BMS-3 200 120-1-60 NO -1ST FL STORAGE 1019 BMS-4 200 120-1-60 YES 10 1ST FL STORAGE 1007A BMS-5 200 120-1-60 10 YES P-1 LEVEL BMS-6 200 120-1-60 10 YES P-2 LEVEL BMS-7 200 120-1-60 10 YES P-3 LEVEL 200 BMS-8 120-1-60 10 YES

1

SYMBOL	MANUFACTUREF
	MODEL
/ DHU	POOL-PAK
$\overline{1}$	AWV-550
NOTES: 1. SINGLE 2. MATCH 3. MATCH	SOURCE POWER SUPF TO AC-1 FOR HEAT F TO DH-1 FOR SPACE
SYMBOL	MANUFACTURER
	MODEL
	POOL-PAK
2	PAC-042
NOTES: 1. MATCH	TO DHU-1.

- SEQUENTIAL NUMBER PER FLOOR

2-600 CFM

3-800 CFM

15–14/

Floor ---

							SPA [DE-HUN	MIDIFIC	CATION	UNIT	SCHED	ULE															
RER	TYPE	LOCATION	SERVICE		RETURN	MIN OSA	ТСР	FSP	SUPPL	LY FAN	FAN	DRIVE	RHP	НР	τοται				(SPA TEMP	MOISTURF	MCA	ELECTRICAL	DATA	FILTERS		OPER WGT	REMARKS	.S
				(CFM)	(CFM)	(CFM)	(IN WC)	(IN WC)	RPM	(FT)	TYPE	TYPE			(MBH)	(MBH)	(°F) DB	RH	(°F)	REMOVAL (LBS/HR)	(AMPS)	(AMPS)	(VOLTS/PH/HZ)		ISOLATION	(LBS)		
K D	CONSTANT VOLUME VERTICAL PACKAGED INDOOR TYPE	SPA 2ND FLOOR	SPA SPACE CONDITIONING	1,300	1,300	0	-	.5	_	_	CENTRIF. FC	BELT	.4	1/2	23	14	86	60%	104	10	18	25	208-1-60		INTERNAL	450	1,2,3	

SUPPLY. IEAT REJECTION SPACE HEATING

2

		AIR COOLED CO	NDENS	SER SCH	IEDULE									ELECTRIC DUCT	HEATE	ER SCH	IEDULE					
			CAP	ACITY		ELECTRICA	L DATA	VIBRATION	OPER							CA	PACITY			ELEC	RICAL DATA	
(ER	LOCATION	SERVICE	AMBIENT	CAPACITY	# FANS	FLA	POWER	ISOLATION	WGT	KEMAKKS	STMBUL	MANUFACTURER	LUCATION	SERVICE			AIRFLOW	EAT	_at #	STGS –	POWER	T KEMAKKS
			(` F)	(MBH)		(IN WC)	(VOLTS/PH/HZ)		(LBS)			MODEL			(KW)	(MBH)	(CFM)	('F) (F)	-	(VOLTS/PH/HZ)	
<	-	SPA SPACE HEAT REJECTION	105	25	1	3	208-1-60	INTERNAL	450	1	DH 01	INDEECO		SPA SPACE HEATING	10	34	1,300	55	79	3	- 460-3-60	1
											NOTES: 1. ——											

4

3

I. APPLICABILITY

Except as modified herein, this schedule is applicable only to a non-residential transmission or primary voltage Customer (as defined in Paragraph XI.) who elects to receive Electricity Supply Service and Electric Delivery Service from the Company and whose peak measured demand has reached or exceeded 500 kW during at least three billing months within the current and previous 11 billing months.

For a Customer served under this schedule whose peak measured demand has decreased to less than 500 kW, this schedule shall remain applicable to the Customer and the Customer shall not have the option to purchase electricity under Schedule GS-1, GS-2, or GS-2T until such time as the maximum measured demand has remained at less than 500 kW during all billing months within the current and previous 11 billing months.

At such time the Customer no longer meets the above applicability requirements, the Customer shall remain on this schedule for the period (not exceeding two additional billing months) required to achieve an orderly transfer to the applicable schedule.

For new service, this schedule is applicable when the anticipated kW demand meets the above criteria.

II. 30-DAY RATE

A. Distribution Service Charges

1.	Basic Customer Charge
	Basic Customer Charge \$127.60 per billing month.

2.	Plus Distribution Demand Charge		
	First 5000 kW of Distribution Demand	@	\$1.000 per kW
	Additional kW of Distribution Demand	@	\$0.755 per kW
3.	Plus rkVA Demand Charge	@	\$0.15 per rkVA

(Continued)

II. 30-DAY RATE (Continued)

B. Electricity Supply Service Charges

1. On-Peak Electricity Supply Demand Charge

	a.	All On-Peak Electricity Supply Dem	and for		
		Primary Service Voltage	@	\$ 12.003 per kW	
	b.	All On-Peak Electricity Supply Dem Transmission Service Voltage	and for @	\$ 11 715 per kW	
		Transmission Service Voluge	e	φ 11./15 per κ.υ	
2.	Plus C	Off-Peak Electricity Supply Demand C	harge		
	All Of	f-Peak kW Demand	@	\$ 0.632 per kW	
3.	Plus E	lectricity Supply Adjustment Demand	l Charge		
	First 5	000 kW of Demand @	(\$ 0.4	21) per kW	
	Additi	onal kW of Demand	@	(\$ 0.318) per kW	
4.	Plus E	lectricity Supply kWh Charge			
	All Or	n-peak kWh	@	0.404¢ per kWh	
	All Of	f-Peak kWh	@	0.272¢ per kWh	
5.	Each I	Electricity Supply kilowatthour used i	s subject to	o Fuel Charge Rider A.	

C. The minimum charge shall be as may be contracted for.

(Continued)

Superseding Filing Effective For Usage On and After 01-01-04. This Filing Effective For Usage On and After 07-01-07.

III. DETERMINATION OF ON-PEAK AND OFF-PEAK HOURS

The following on-peak and off-peak hours are applicable to the billing of all charges stated in this schedule.

- A. On-peak hours are as follows:
 - 1. For the period of June 1 through September 30, 10 a.m. to 10 p.m., Mondays through Fridays.
 - 2. For the period of October 1 through May 31, 7 a.m. to 10 p.m., Mondays through Fridays.
- B. All hours not specified in III.A. are off-peak.

IV. DETERMINATION OF DISTRIBUTION DEMAND

- A. Distribution Demand shall be billed only where the normal service delivery voltage is less than 69 kV.
- B. The Distribution Demand billed under Paragraph II.A.2. shall be such as may be contracted for but not less than the highest of:
 - 1. The highest average kW measured at the location during any 30-minute interval of the current and previous 11 billing months.
 - 2. 500 kW.
- C. When the Customer's power factor is less than 85 percent, a minimum distribution demand of not less than 85 percent of the Customer's maximum kVA demand may be established.

V. DETERMINATION OF rkVA DEMAND

The rkVA of demand billed shall be the highest average rkVA measured in any 30-minute interval during the current billing month.

(Continued)

Superseding Filing Effective For Usage On and After 01-01-04. This Filing Effective For Usage On and After 07-01-07.

VI. DETERMINATION OF ON-PEAK ELECTRICITY SUPPLY DEMAND

The kW of demand billed under II.B.1. shall be the highest of:

- A. The highest average kW measured in any 30-minute interval of the current billing month during on-peak hours.
- B. Seventy-five percent of the highest kW of demand at this location as determined under VI.A., above, during the billing months of June through September of the preceding 11 billing months.
- C. 100 kW.

VII. DETERMINATION OF OFF-PEAK ELECTRICITY SUPPLY DEMAND

The kW of demand billed under Paragraph II.B.2. shall be the off-peak demand which is in excess of 90% of the On-Peak Electricity Supply Demand determined under Paragraph VI.

VIII. DETERMINATION OF ELECTRICITY SUPPLY ADJUSTMENT DEMAND

This credit is required in order to achieve customer bill neutrality, arising from changes to the Distribution Demand Charge while maintaining the overall capped rates. The kW of demand billed under Paragraph II.B.3. shall be the Distribution Demand determined under Paragraph IV.

IX. METER READING AND BILLING

When the actual number of days between meter readings is more or less than 30 days, the Basic Customer Charge, the Distribution Demand Charge, the rkVA Demand Charge, the On-Peak Electricity Supply Demand Charge, the Off-peak Electricity Supply Demand Charge, the Electricity Supply Adjustment Demand Charge, and the minimum charge of the 30-day rate will each be multiplied by the actual number of days in the billing period and divided by 30.

(Continued)

Superseding Filing Effective For Usage On and After 01-01-04. This Filing Effective For Usage On and After 07-01-07.

X. STANDBY, MAINTENANCE OR PARALLEL OPERATION SERVICE

A Customer requiring standby, maintenance or parallel operation service may elect service under this schedule provided the Customer contracts for the maximum kW which the Company is to supply. Standby, maintenance or parallel operation service is subject to the following provisions:

- A. Suitable relays and protective apparatus shall be furnished, installed, and maintained at the Customer's expense in accordance with specifications furnished by the Company. The relays and protective equipment shall be subject, at all reasonable times, to inspection by the Company's authorized representative.
- B. In case the Distribution Demand determined under Paragraph IV. exceeds the contract demand, the contract demand shall be increased by such excess demand.
- C. The demand billed under II.A.2. and II.B.3. shall be the contract demand.
- XI. DEFINITION OF TRANSMISSION, PRIMARY AND SECONDARY VOLTAGE CUSTOMER
 - A. A transmission voltage Customer is any Customer whose delivery voltage is 69 kV or above.
 - B. A primary voltage Customer is any Customer (a) served from a circuit of 69 kV or more where the delivery voltage is 4,000 volts or more, (b) served from a circuit of less than 69 kV where Company-owned transformation is not required at the Customer's site, (c) where Company-owned transformation has become necessary at the Customer's site because the Company has changed the voltage of the circuit from that originally supplied, or (d) at a location served prior to October 27, 1992 where the Customer's connection to the Company's facilities is made at 2,000 volts or more.
 - C. A secondary voltage Customer is any Customer not defined in XI.A. or XI.B. as a transmission or primary voltage Customer.

(Continued)

Superseding Filing Effective For Usage On and After 01-01-04. This Filing Effective For Usage On and After 07-01-07.

(Continued)

XII. TERM OF CONTRACT

The contract shall be open order unless (a) standby, maintenance or parallel operation service is provided, or (b) the Customer or the Company requests a written contract. In such cases, the term of contract for the purchase of electricity under this schedule shall be as mutually agreed upon, but for not less than one year. During the minimum term of applicability, the Customer may be billed under the corresponding Unbundled Rate Schedule GS-4U, if applicable.

ENERGY CALCULATIONS APPENDIX E

JULIA E. PHILLIPS CONSTRUCTION MANAGEMENT

Current Energy Use Based on 24/7 Run Schedule

Based on Degree	Day Weathe	r Data:		Heating = 68% of Total	Year
				Cooling = 32% of Total	Year
				* Assumed Set Point o	f 65° F
Average Electric H	eating Units	(Drawin	g E 3.3)		
140 x	1.50	kW			
33 x	3.00	kW			
16 x	2.50	kW			
189 units	349	kW			
Average Horsepov Total Electric for C	ver per fan = Cooling = 189	= 0.05kW 9*0.05 = 1	9.45kW		
Building Demand	= 656.1 kVA		\longrightarrow	* Assume GS - 4 Deter	mined by Virginia Dominion Power
* Assume 81% Oc	cupancy -		→ 147	Rooms Filled of 181	
Total Heating Ene	rgy Use = (0	.81)(358	.45 kW) =	290.34 kW	
Total Cooling Ener	rgy Use = (0.	81)(9.45	kW) =	7.65 kW	
Total Heating Ene	rgy Use per	Day = (0.8	81)(0.68*24 Hrs	s)(358.45 kW) =	3,939.19 kWh
Total Cooling Ener	gy Use per I	Day = (0.8	31)(0.32*24 Hrs)(358.45 kW) =	1,853.74 kWh
Peak Time		→6/1 to 9	9/30 Monday th	rough Friday from 10:0	00am to 10:00pm
		10/1 to	5/31 Monday t	hrough Friday from 7:0	0am to 10:00pm
		\$0.404	per kWh		
		261 P	eak Days		
Off-Peak Time		⇒1/1 to 1	12/31 Evenings	and Weekends	
		\$0.272	per kWh		
	_	104 O	ff-Peak Days		
Energy Cost Calcu	lations				
Peak Time Cost - I	leating	= (29	$90.34) * \left[\left(\frac{12h}{1D_0} \right) \right]$	$\left(\frac{99 Days}{1 Tear}\right) + \left(\frac{15 hr}{1 Days}\right)$	$\left(\frac{179 Days}{1 Yeer}\right) \times 0.68$
		=	720,832.48	kWh	
		=	\$2,912.16		

RESIDENCE INN BY MARRIOTT 2345 MILL RD, ALEXANDRIA, VA ENERGY CALCULATIONS APPENDIX E

JULIA E. PHILLIPS CONSTRUCTION MANAGEMENT

Peak Time Cost - Cooling

 $= (7.65) * \left[\left(\frac{12 hrs.}{1 \rho_{ay}} \right) \left(\frac{38 \rho_{ays}}{1 Fear} \right) + \left(\frac{38 hrs.}{1 \rho_{ay}} \right) \left(\frac{178 \rho_{ays}}{1 Fear} \right) \right] * 0.32$ = 8942.91 kWh = \$36.13

Off-Peak Time Cost - Heating

 $= (290.34) * \left[\left(\frac{24 \text{ hrs.}}{1 \text{ Bay}} \right) \left(\frac{304 \text{ Days}}{1 \text{ Year}} \right) + \left(\frac{12 \text{ hrs.}}{1 \text{ Days}} \right) \left(\frac{38 \text{ Days}}{1 \text{ Year}} \right) + \left(\frac{15 \text{ hrs.}}{1 \text{ Days}} \right) \left(\frac{173 \text{ Days}}{1 \text{ Year}} \right) \right] * 0.68$

- = 1,008,691.63 kWh
- = \$2,743.64

Off-Peak Time Cost - Cooling

$$= (7.65) * \left[\left(\frac{24 hro.}{1 Day} \right) \left(\frac{104 Days}{1 Year} \right) + \left(\frac{12 hro.}{1 Day} \right) \left(\frac{99 Days}{1 Year} \right) + \left(\frac{15 hro.}{1 Day} \right) \left(\frac{179 Days}{1 Year} \right) \right] * 0.32$$

- = 26,592.65 kWh
- = \$72.33

Total kWh =	1,765,059.67
Total Cost =	\$5,764.27

JULIA E. PHILLIPS CONSTRUCTION MANAGEMENT

New Energy Use Based on Adjustable Run Schedule

Based on Degree Day Weather Data:			Heating = 68% of To	otal Year
			Cooling = 32% of Total Year	
			* Assumed Set Poir	nt of 65° F
Average Electi	ric Heating Ur	nits (Drawing E 3.3)	Average Ho	rsepower per fan = 0.05kW
140 x	1.50	kW	Total Electri	ic for Cooling = 189*0.05 = 9.45kW
33 x	3.00	kW		
16 x	2.50	kW		
189 units	349	kW		
Average Horse Total Electric 1	epower per fa for Cooling =	ın = 0.05kW 189*0.05 = 9.45kW		
Building Dema	and = 656.1 k	/A	→ * Assume GS - 4 De	termined by Virginia Dominion Power
* Assume 81%	6 Occupancy	→ 1	.47 Rooms Filled of 181	
Total Heating	Energy Use =	: (0.81)(358.45 kW) =	290.34 kW	
Total Cooling	Energy Use =	(0.81)(9.45 kW) =	7.65 kW	
Total Heating	Energy Use p	er Day = (0.81)(0.68*24	Hrs)(358.45 kW) =	3,939.19 kWh
Total Cooling	Energy Use p	er Day = (0.81)(0.32*24	Hrs)(358.45 kW) =	1,853.74 kWh
Peak Time		→6/1 to 9/30 Monday	through Friday from 10	1:00am to 10:00pm
		10/1 to 5/31 Monday	y through Friday from 7	':00am to 10:00pm
		\$0.404 per kWh		
		261 Peak Days		
Off-Peak Time		\rightarrow 1/1 to 12/31 Evening	gs and Weekends	
		\$0.272 per kWh		
		104 Off-Peak Days	5	
Trace Schedul	e for Hotel O	ccupancy Rate:		
12	am - 9 am =	100%		
9 a	m - 11 am =	20%		
11	am - 5 pm =	0%		
5 p	om - 12 am =	100%		

RESIDENCE INN BY MARRIOTT 2345 MILL RD, ALEXANDRIA, VA

ENERGY CALCULATIONS APPENDIX E

JULIA E. PHILLIPS CONSTRUCTION MANAGEMENT

The Residence Inn is slated for mainly long term business people. Average hours of commute are between 7 am and 9 am.

Adjusted Schedule for Hotel Occupancy Rate:

 12 am - 9 am =
 85%
 * Assumes leaving at 7:30 am

 9 am - 11 am =
 0%

 11 am - 5 pm =
 0%

 5 pm - 12 am =
 100%

Energy Cost Calculations

"Over-ride" Heating Usage = All Off-Peak Time from 10:00pm to 7:00am

 $= (290.34) * \left[\left(\frac{9 \text{ trys}}{10 \text{ ay}} \right) \left(\frac{268 D \text{ ays}}{1 \text{ tream}} \right) \right] * 0.68$ = 648,571.54 kWh = \$1,764.11

"Over-ride" Cooling Usage = All Off-Peak Time from 10:00pm to 7:00am

$= (7.65) * \left[\left(\frac{9 hrs.}{1 Doy} \right) \left(\frac{368 Doys}{1 Year} \right) \right] * 0.3$					
=	8,046.41	kWh			
=	\$21.89				

User Controlled Heating Usage = All Peak Time = 5.65 hrs total of Day

 $= (290.34) * \left[\left(\frac{268 \text{ hrs.}}{1 \text{ Day}} \right) \left(\frac{268 \text{ Days}}{1 \text{ Year}} \right) \right] * 0.68$ = 407,158.80 kWh = \$1,644.92

User Controlled Cooling Usage = All Peak Time = 5.65 hrs total of Day

$$= (7.65) * \left[\left(\frac{4.68 \text{ hrs.}}{1 \text{ Doy}} \right) \left(\frac{368 \text{ Days}}{1 \text{ Year}} \right) \right] * 0.32$$

= 5,051.36 kWh
= \$20.41

Total kWh =	1,068,828.11
Total Cost =	\$3,451.33

UNIT G SCALE: 1/4" = 1'-0

ω

0

4 GFI 4 GFI + 42"

+60[#]

⊕+18"

<u>B</u>

FCU IS

2.0KW

HEAT)

UNIT H SCALE: 1/4" = 1'-0

ω

THIS DOCUMENT IS THE PROPERTY OF DAVIS, CARTER, SCOTT ". IT IS TO BE USED FOR THE SPECIFIC PROJECT IDENTIFIED OR REFERRED TO HEREIN OR EXTENSIONS TO THIS PROJECT, IN WHOLE OR PART. 'D A VIS ~ CARTER ~ SCOTT ALL RIGHTS RESERVED.

DRAWING NUMBER E 2.1 SHEET OF	Printed On: 2/20/07, 4:17 pm SCALE DATE OCTOBER 20th, 2006 DRAWN BY CHECKED BY E 2-1(UNITS).dwg	DRAWING TITLE 1/4" SCALE GUEST ROOM LAYOUTS	PROJECT TITLE RESIDENCE NN BY MARRIOTT MARRIOTT 2345/2347 MILL ROAD ALEXANDRIA, VIRGINIA PROJECT NO. 305412.00	REVISIONS PERMIT SET OCT. 20, 2006 ¬95% PRICING DEC. 01, 2006 CITY OF ALEXANDRIA PERMIT COMMENTS DEC. 12, 2006 CITY OF ALEXANDRIA PERMIT COMMENTS #2 JAN. 23. 2007 FINAL CONSTRUCTION SET FEB. 16, 2007 FINAL CONSTRUCTION SET FINAL CONSTRUCTION SET FEB. 16, 2007		GIRARD ENGINEERING 1355 Beverly Rd. McLean, Virginia 22101 (703) 442-8787 DESIGN ACC/AW DRAWN DN/AM JOB No. 05055.00 Q.A. DESIGN DESIGN DCU	DAVIS CARTER SCOTTLtd SCOTTLtd 1676 International Drive Suite 500 McLean, Virginia 22102 P 703.856.9275 F 703.821.6976 www.dcsdesign.com	
-------------------------------------	--	---	--	--	--	---	---	--

Equipment Room Exhaust Fan/Intake Damper

Damper Thermostat Wiring Detail

FCU Wiring Diagram

(_.,

Exhaust Fan Motor Wiring Detail

Residence Inn By Marriott 2345 / 2347 Mill Road, Alexandria, VA						
	Building automation system					
MISCELLANEOUS CONTROLS						
REV. 1	SUBMITTAL	5-24-2007	JOB NO.: 7116968			
	Southland Industries					
	22340 Dresden St. Suite 177 Dulles, VA 20166 (703) 834-5570		DRAWN BY: YZ			
			19 of 19			

